Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase.
نویسندگان
چکیده
Human angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a zinc metalloprotease whose closest homolog is angiotensin I-converting enzyme. To begin to elucidate the physiological role of ACE2, ACE2 was purified, and its catalytic activity was characterized. ACE2 proteolytic activity has a pH optimum of 6.5 and is enhanced by monovalent anions, which is consistent with the activity of ACE. ACE2 activity is increased approximately 10-fold by Cl(-) and F(-) but is unaffected by Br(-). ACE2 was screened for hydrolytic activity against a panel of 126 biological peptides, using liquid chromatography-mass spectrometry detection. Eleven of the peptides were hydrolyzed by ACE2, and in each case, the proteolytic activity resulted in removal of the C-terminal residue only. ACE2 hydrolyzes three of the peptides with high catalytic efficiency: angiotensin II () (k(cat)/K(m) = 1.9 x 10(6) m(-1) s(-1)), apelin-13 (k(cat)/K(m) = 2.1 x 10(6) m(-1) s(-1)), and dynorphin A 1-13 (k(cat)/K(m) = 3.1 x 10(6) m(-1) s(-1)). The ACE2 catalytic efficiency is 400-fold higher with angiotensin II () as a substrate than with angiotensin I (). ACE2 also efficiently hydrolyzes des-Arg(9)-bradykinin (k(cat)/K(m) = 1.3 x 10(5) m(-1) s(-1)), but it does not hydrolyze bradykinin. An alignment of the ACE2 peptide substrates reveals a consensus sequence of: Pro-X((1-3 residues))-Pro-Hydrophobic, where hydrolysis occurs between proline and the hydrophobic amino acid.
منابع مشابه
NEP, ACE and Homologues: The Pathophysiology of Membrane Metalloproteases
The zinc metalloprotease, neprilysin (NEP), plays a role in the metabolism of cardiovascular, inflammatory and neuropeptides, including mitogenic peptides such as bombesin. In the cardiovascular system, NEP has a primary role in the inactivation of natriuretic peptides but also contributes to local metabolism of angiotensin, endothelins and bradykinin. Hence NEP is seen as a potential therapeut...
متن کاملThe spectrophotometric determination of human serum carboxypolypeptidase with angiotensin converting enzyme-like activity.
1. A colorimetric method was developed for the direct chemical assay of human carboxypeptidase A (carboxypolypeptidase; EC 3.4.12.2) with angiotensin converting enzyme-like activity in serum or plasma, with the substrate analogue glycyl-L-histidylglycine and the angiotensin converting enzyme substrate angiotensin I (A-I). This method was based on the spectrophototometric determination of histid...
متن کاملEnzymatic properties of dipeptidyl carboxypeptidase from Bacillus pumilus.
Enzymatic properties of dipeptidyl carboxypeptidase (DCP) from Bacillus pumilus were investigated. The enzyme was more active on tri- and tetrapeptides than angiotensin-converting enzyme (ACE) from rabbit lung. The presence of chloride ion is essential for the hydrolysis. The Km value of angiotensin I for the enzyme was 0.119 x 10(-3) M. The enzyme was not inhibited by the mammalian ACE inhibit...
متن کاملThe physiological significance of the alternative pathways of angiotensin II production.
Although the use of angiotensin converting enzyme inhibitors (ACE-Is) in clinical practice brought the great chance to recognize the RAS role in the physiology and pathology, there are still many questions which we cannot answer. This article reviews actually known pathways of angiotensin II (Ang II) and other peptides of renin-angiotensin system (RAS) production and their physiological signifi...
متن کاملDigestion and Assimilation of Proline - containing Peptides by Rat Intestinal
Two intestinal brush border membrane carboxypeptidases were found to participate in the sequential digestion of proline-containing peptides representing a novel mechanism of hydrolysis from the COOH terminus. NH2-blocked prolyl tripeptides were rapidly hydrolyzed by either brush border membrane angiotensin converting enzyme (ACE, dipeptidyl carboxypeptidase, E.C. 3.4.15.1) or carboxypeptidase P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 17 شماره
صفحات -
تاریخ انتشار 2002